
BASH(1) BASH(1)

NAME

bash − GNU Bourne−Again SHell

SYNOPSIS

bash [options] [file]

COPYRIGHT

Bash is Copyright © 1989, 1991 by the Free Software Foundation, Inc.

DESCRIPTION

Bash is an sh−compatible command language interpreter that executes commands read from the standard
input or from a file. Bash also incorporates useful features from the Korn and C shells (ksh and csh).

Bash is ultimately intended to be a conformant implementation of the IEEE Posix Shell and Tools specifi-
cation (IEEE Working Group 1003.2).

OPTIONS

In addition to the single−character shell options documented in the description of the set builtin command,
bash interprets the following flags when it is invoked:

−c string If the −c flag is present, then commands are read from string. If there are arguments after the
string, they are assigned to the positional parameters, starting with $0.

−i If the −i flag is present, the shell is interactive.
−s If the −s flag is present, or if no arguments remain after option processing, then commands are

read from the standard input. This option allows the positional parameters to be set when
invoking an interactive shell.

− A single − signals the end of options and disables further option processing. Any arguments
after the − are treated as filenames and arguments. An argument of −− is equivalent to an argu-
ment of −.

Bash also interprets a number of multi−character options. These options must appear on the command line
before the single−character options to be recognized.

−norc Do not read and execute the personal initialization file ˜/.bashrc if the shell is interactive. This
option is on by default if the shell is invoked as sh.

−noprofile Do not read either the system−wide startup file /etc/profile or any of the personal initialization
files ˜/.bash_profile, ˜/.bash_login, or ˜/.profile. By default, bash normally reads these files
when it is invoked as a login shell (see INVOCATION below).

−rcfile file Execute commands from file instead of the standard personal initialization file ˜/.bashrc, if the
shell is interactive (see INVOCATION below).

−version Show the version number of this instance of bash when starting.
−quiet Do not be verbose when starting up (do not show the shell version or any other information).

This is the default.
−login Make bash act as if it had been invoked as a login shell.
−nobraceexpansion

Do not perform curly brace expansion (see Brace Expansion below).
−nolineediting

Do not use the GNU readline library to read command lines if interactive.
−posix Change the behavior of bash where the default operation differs from the Posix 1003.2 stan-

dard to match the standard

ARGUMENTS

If arguments remain after option processing, and neither the −c nor the −s option has been supplied, the first
argument is assumed to be the name of a file containing shell commands. If bash is invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remaining arguments. Bash
reads and executes commands from this file, then exits. Bash’s exit status is the exit status of the last com-
mand executed in the script.

GNU 1994 July 26 1

BASH(1) BASH(1)

DEFINITIONS

blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also known as a token.
name A word consisting only of alphanumeric characters and underscores, and beginning with an alpha-

betic character or an underscore. Also referred to as an identifier.
metacharacter

A character that, when unquoted, separates words. One of the following:
| & ; () < > space tab

control operator
A token that performs a control function. It is one of the following symbols:
  & && ; ;; () | <newline>

RESERVED WORDS

Reserved words are words that have a special meaning to the shell. The following words are recognized as
reserved when unquoted and either the first word of a simple command (see SHELL GRAMMAR below) or
the third word of a case or for command:

! case do done elif else esac fi for function if in select then until
while { }

SHELL GRAMMAR

Simple Commands
A simple command is a sequence of optional variable assignments followed by blank−separated words and
redirections, and terminated by a control operator. The first word specifies the command to be executed.
The remaining words are passed as arguments to the invoked command.

The return value of a simple command is its exit status, or 128+n if the command is terminated by signal n.

Pipelines
A pipeline is a sequence of one or more commands separated by the character |. The format for a pipeline
is:

[!] command [| command2 ...]

The standard output of command is connected to the standard input of command2. This connection is per-
formed before any redirections specified by the command (see REDIRECTION below).

If the reserved word ! precedes a pipeline, the exit status of that pipeline is the logical NOT of the exit sta-
tus of the last command. Otherwise, the status of the pipeline is the exit status of the last command. The
shell waits for all commands in the pipeline to terminate before returning a value.

Each command in a pipeline is executed as a separate process (i.e., in a subshell).

Lists
A list is a sequence of one or more pipelines separated by one of the operators ;, &, &&, or   , and termi-
nated by one of ;, &, or <newline>.

Of these list operators, && and   have equal precedence, followed by ; and &, which have equal prece-
dence.

If a command is terminated by the control operator &, the shell executes the command in the background in
a subshell. The shell does not wait for the command to finish, and the return status is 0. Commands sepa-
rated by a ; are executed sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last command executed.

The control operators && and   denote AND lists and OR lists, respectively. An AND list has the form

command && command2

command2 is executed if, and only if, command returns an exit status of zero.

An OR list has the form

command   command2

GNU 1994 July 26 2

BASH(1) BASH(1)

command2 is executed if and only if command returns a non−zero exit status. The return status of AND
and OR lists is the exit status of the last command executed in the list.

Compound Commands
A compound command is one of the following:

(list) list is executed in a subshell. Variable assignments and builtin commands that affect the shell’s
environment do not remain in effect after the command completes. The return status is the exit
status of list.

{ list; } list is simply executed in the current shell environment. This is known as a group command. The
return status is the exit status of list.

for name [in word;] do list ; done
The list of words following in is expanded, generating a list of items. The variable name is set to
each element of this list in turn, and list is executed each time. If the in word is omitted, the for
command executes list once for each positional parameter that is set (see PARAMETERS below).

select name [in word;] do list ; done
The list of words following in is expanded, generating a list of items. The set of expanded words
is printed on the standard error, each preceded by a number. If the in word is omitted, the posi-
tional parameters are printed (see PARAMETERS below). The PS3 prompt is then displayed and a
line read from the standard input. If the line consists of the number corresponding to one of the
displayed words, then the value of name is set to that word. If the line is empty, the words and
prompt are displayed again. If EOF is read, the command completes. Any other value read causes
name to be set to null. The line read is saved in the variable REPLY. The list is executed after
each selection until a break or return command is executed. The exit status of select is the exit
status of the last command executed in list, or zero if no commands were executed.

case word in [pattern [| pattern] ...) list ;;] ... esac
A case command first expands word, and tries to match it against each pattern in turn, using the
same matching rules as for pathname expansion (see Pathname Expansion below). When a
match is found, the corresponding list is executed. After the first match, no subsequent matches
are attempted. The exit status is zero if no patterns are matches. Otherwise, it is the exit status of
the last command executed in list.

if list then list [elif list then list] ... [else list] fi
The if list is executed. If its exit status is zero, the then list is executed. Otherwise, each elif list is
executed in turn, and if its exit status is zero, the corresponding then list is executed and the com-
mand completes. Otherwise, the else list is executed, if present. The exit status is the exit status
of the last command executed, or zero if no condition tested true.

while list do list done
until list do list done

The while command continuously executes the do list as long as the last command in list returns
an exit status of zero. The until command is identical to the while command, except that the test
is negated; the do list is executed as long as the last command in list returns a non−zero exit status.
The exit status of the while and until commands is the exit status of the last do list command
executed, or zero if none was executed.

[function] name () { list; }
This defines a function named name. The body of the function is the list of commands between {
and }. This list is executed whenever name is specified as the name of a simple command. The
exit status of a function is the exit status of the last command executed in the body. (See FUNC-

TIONS below.)

COMMENTS

In a non−interactive shell, or an interactive shell in which the -o interactive−comments option to the set
builtin is enabled, a word beginning with # causes that word and all remaining characters on that line to be
ignored. An interactive shell without the -o interactive−comments option enabled does not allow

GNU 1994 July 26 3

BASH(1) BASH(1)

comments.

QUOTING

Quoting is used to remove the special meaning of certain characters or words to the shell. Quoting can be
used to disable special treatment for special characters, to prevent reserved words from being recognized as
such, and to prevent parameter expansion.

Each of the metacharacters listed above under DEFINITIONS has special meaning to the shell and must be
quoted if they are to represent themselves. There are three quoting mechanisms: the escape character, sin-
gle quotes, and double quotes.

A non-quoted backslash (\) is the escape character. It preserves the literal value of the next character that
follows, with the exception of <newline>. If a \<newline> pair appears, and the backslash is not quoted, the
\<newline> is treated as a line continuation (that is, it is effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within the quotes. A sin-
gle quote may not occur between single quotes, even when preceded by a backslash.

Enclosing characters in double quotes preserves the literal value of all characters within the quotes, with the
exception of $, ‘, and \. The characters $ and ‘ retain their special meaning within double quotes. The
backslash retains its special meaning only when followed by one of the following characters: $, ‘, " , \, or
<newline>. A double quote may be quoted within double quotes by preceding it with a backslash.

The special parameters * and @ have special meaning when in double quotes (see PARAMETERS below).

PARAMETERS

A parameter is an entity that stores values, somewhat like a variable in a conventional programming lan-
guage. It can be a name, a number, or one of the special characters listed below under Special Parameters.
For the shell’s purposes, a variable is a parameter denoted by a name.

A parameter is set if it has been assigned a value. The null string is a valid value. Once a variable is set, it
may be unset only by using the unset builtin command (see SHELL BUILTIN COMMANDS below).

A variable may be assigned to by a statement of the form

name=[value]

If value is not given, the variable is assigned the null string. All values undergo tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quote removal. If the variable
has its −i attribute set (see declare below in SHELL BUILTIN COMMANDS) then value is subject to arith-
metic expansion even if the $[...] syntax does not appear. Word splitting is not performed, with the excep-
tion of "$@" as explained below under Special Parameters. Pathname expansion is not performed.

Positional Parameters
A positional parameter is a parameter denoted by one or more digits, other than the single digit 0. Posi-
tional parameters are assigned from the shell’s arguments when it is invoked, and may be reassigned using
the set builtin command. Positional parameters may not be assigned to with assignment statements. The
positional parameters are temporarily replaced when a shell function is executed (see FUNCTIONS below).

When a positional parameter consisting of more than a single digit is expanded, it must be enclosed in
braces (see EXPANSION below).

Special Parameters
The shell treats several parameters specially. These parameters may only be referenced; assignment to
them is not allowed.
* Expands to the positional parameters, starting from one. When the expansion occurs within dou-

ble quotes, it expands to a single word with the value of each parameter separated by the first char-
acter of the IFS special variable. That is, ‘‘$*’’ is equivalent to ‘‘$1c$2c...’’, where c is the first
character of the value of the IFS variable. If IFS is null or unset, the parameters are separated by
spaces.

@ Expands to the positional parameters, starting from one. When the expansion occurs within dou-
ble quotes, each parameter expands as a separate word. That is, ‘‘ $@’’ is equivalent to ‘‘$1’’
‘‘$2’’ ... When there are no positional parameters, ‘‘$@’’ and $@ expand to nothing (i.e., they are

GNU 1994 July 26 4

BASH(1) BASH(1)

removed).
Expands to the number of positional parameters in decimal.
? Expands to the status of the most recently executed foreground pipeline.
− Expands to the current option flags as specified upon invocation, by the set builtin command, or

those set by the shell itself (such as the −i flag).
$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current

shell, not the subshell.
! Expands to the process ID of the most recently executed background (asynchronous) command.
0 Expands to the name of the shell or shell script. This is set at shell initialization. If bash is

invoked with a file of commands, $0 is set to the name of that file. If bash is started with the −c
option, then $0 is set to the first argument after the string to be executed, if one is present. Other-
wise, it is set to the pathname used to invoke bash, as giv en by argument zero.

_ Expands to the last argument to the previous command, after expansion. Also set to the full path-
name of each command executed and placed in the environment exported to that command.

Shell Variables
The following variables are set by the shell:

PPID The process ID of the shell’s parent.
PWD The current working directory as set by the cd command.
OLDPWD

The previous working directory as set by the cd command.
REPLY

Set to the line of input read by the read builtin command when no arguments are supplied.
UID Expands to the user ID of the current user, initialized at shell startup.
EUID Expands to the effective user ID of the current user, initialized at shell startup.
BASH Expands to the full pathname used to invoke this instance of bash.
BASH_VERSION

Expands to the version number of this instance of bash.
SHLVL

Incremented by one each time an instance of bash is started.
RANDOM

Each time this parameter is referenced, a random integer is generated. The sequence of random
numbers may be initialized by assigning a value to RANDOM. If RANDOM is unset, it loses its
special properties, even if it is subsequently reset.

SECONDS
Each time this parameter is referenced, the number of seconds since shell invocation is returned.
If a value is assigned to SECONDS, the value returned upon subsequent references is the number
of seconds since the assignment plus the value assigned. If SECONDS is unset, it loses its special
properties, even if it is subsequently reset.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a script or
function, the value substituted is not guaranteed to be meaningful. When in a function, the value
is not the number of the source line that the command appears on (that information has been lost
by the time the function is executed), but is an approximation of the number of simple commands

executed in the current function. If LINENO is unset, it loses its special properties, even if it is
subsequently reset.

HISTCMD
The history number, or index in the history list, of the current command. If HISTCMD is unset, it
loses its special properties, even if it is subsequently reset.

OPTARG
The value of the last option argument processed by the getopts builtin command (see SHELL

BUILTIN COMMANDS below).

GNU 1994 July 26 5

BASH(1) BASH(1)

OPTIND
The index of the next argument to be processed by the getopts builtin command (see SHELL

BUILTIN COMMANDS below).
HOSTTYPE

Automatically set to a string that uniquely describes the type of machine on which bash is execut-
ing. The default is system-dependent.

OSTYPE
Automatically set to a string that describes the operating system on which bash is executing. The
default is system-dependent.

The following variables are used by the shell. In some cases, bash assigns a default value to a variable;
these cases are noted below.

IFS The Internal Field Separator that is used for word splitting after expansion and to split lines into
words with the read builtin command. The default value is ‘‘<space><tab><newline>’’.

PATH The search path for commands. It is a colon-separated list of directories in which the shell looks
for commands (see COMMAND EXECUTION below). The default path is system−dependent, and
is set by the administrator who installs bash. A common value is
‘‘.:/usr/gnu/bin:/usr/local/bin:/usr/ucb:/bin:/usr/bin:/etc:/usr/etc’’. Note that in some circum-
stances, however, a leading ‘.’ in PATH can be a security hazard.

HOME
The home directory of the current user; the default argument for the cd builtin command.

CDPATH
The search path for the cd command. This is a colon-separated list of directories in which the
shell looks for destination directories specified by the cd command. A sample value is ‘‘.:˜:/usr’’.

ENV If this parameter is set when bash is executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, as in .bashrc. The value of ENV is subjected to
parameter expansion, command substitution, and arithmetic expansion before being interpreted as
a pathname. PATH is not used to search for the resultant pathname.

MAIL If this parameter is set to a filename and the MAILPATH variable is not set, bash informs the user
of the arrival of mail in the specified file.

MAILCHECK
Specifies how often (in seconds) bash checks for mail. The default is 60 seconds. When it is time
to check for mail, the shell does so before prompting. If this variable is unset, the shell disables
mail checking.

MAILPATH
A colon-separated list of pathnames to be checked for mail. The message to be printed may be
specified by separating the pathname from the message with a ‘?’. $_ stands for the name of the
current mailfile. Example:
MAILPATH=’/usr/spool/mail/bfox?"You have mail":˜/shell-mail?"$_ has mail!"’
Bash supplies a default value for this variable, but the location of the user mail files that it uses is
system dependent (e.g., /usr/spool/mail/$USER).

MAIL_WARNING
If set, and a file that bash is checking for mail has been accessed since the last time it was
checked, the message ‘‘The mail in mailfile has been read’’ is printed.

PS1 The value of this parameter is expanded (see PROMPTING below) and used as the primary prompt
string. The default value is ‘‘bash\$ ’’.

PS2 The value of this parameter is expanded and used as the secondary prompt string. The default is
‘‘> ’’.

PS3 The value of this parameter is used as the prompt for the select command (see SHELL GRAM-

MAR above).
PS4 The value of this parameter is expanded and the value is printed before each command bash dis-

plays during an execution trace. The first character of PS4 is replicated multiple times, as neces-
sary, to indicate multiple levels of indirection. The default is ‘‘+ ’’.

GNU 1994 July 26 6

BASH(1) BASH(1)

HISTSIZE
The number of commands to remember in the command history (see HISTORY below). The
default value is 500.

HISTFILE
The name of the file in which command history is saved. (See HISTORY below.) The default
value is ˜/.bash_history. If unset, the command history is not saved when an interactive shell exits.

HISTFILESIZE
The maximum number of lines contained in the history file. When this variable is assigned a
value, the history file is truncated, if necessary, to contain no more than that number of lines. The
default value is 500.

OPTERR
If set to the value 1, bash displays error messages generated by the getopts builtin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell is invoked
or a shell script is executed.

PROMPT_COMMAND
If set, the value is executed as a command prior to issuing each primary prompt.

IGNOREEOF
Controls the action of the shell on receipt of an EOF character as the sole input. If set, the value is
the number of consecutive EOF characters typed as the first characters on an input line before
bash exits. If the variable exists but does not have a numeric value, or has no value, the default
value is 10. If it does not exist, EOF signifies the end of input to the shell. This is only in effect
for interactive shells.

TMOUT
If set to a value greater than zero, the value is interpreted as the number of seconds to wait for
input after issuing the primary prompt. Bash terminates after waiting for that number of seconds
if input does not arrive.

FCEDIT
The default editor for the fc builtin command.

FIGNORE
A colon-separated list of suffixes to ignore when performing filename completion (see READLINE

below). A filename whose suffix matches one of the entries in FIGNORE is excluded from the list
of matched filenames. A sample value is ‘‘.o:˜’’.

INPUTRC
The filename for the readline startup file, overriding the default of ˜/.inputrc (see READLINE

below).
notify If set, bash reports terminated background jobs immediately, rather than waiting until before print-

ing the next primary prompt (see also the −b option to the set builtin command).
history_control
HISTCONTROL

If set to a value of ignorespace, lines which begin with a space character are not entered on the
history list. If set to a value of ignoredups, lines matching the last history line are not entered. A
value of ignoreboth combines the two options. If unset, or if set to any other value than those
above, all lines read by the parser are saved on the history list.

command_oriented_history
If set, bash attempts to save all lines of a multiple−line command in the same history entry. This
allows easy re−editing of multi−line commands.

glob_dot_filenames
If set, bash includes filenames beginning with a ‘.’ in the results of pathname expansion.

allow_null_glob_expansion
If set, bash allows pathname patterns which match no files (see Pathname Expansion below) to
expand to a null string, rather than themselves.

GNU 1994 July 26 7

BASH(1) BASH(1)

histchars
The two or three characters which control history expansion and tokenization (see HISTORY

EXPANSION below). The first character is the history expansion character, that is, the character
which signals the start of a history expansion, normally ‘!’. The second character is the quick sub-

stitution character, which is used as shorthand for re-running the previous command entered, sub-
stituting one string for another in the command. The default is ‘ˆ’. The optional third character is
the character which signifies that the remainder of the line is a comment, when found as the first
character of a word, normally ‘#’. The history comment character causes history substitution to be
skipped for the remaining words on the line. It does not necessarily cause the shell parser to treat
the rest of the line as a comment.

nolinks
If set, the shell does not follow symbolic links when executing commands that change the current
working directory. It uses the physical directory structure instead. By default, bash follows the
logical chain of directories when performing commands which change the current directory, such
as cd. See also the description of the −P option to the set builtin (SHELL BUILTIN COMMANDS

below).
hostname_completion_file
HOSTFILE

Contains the name of a file in the same format as /etc/hosts that should be read when the shell
needs to complete a hostname. The file may be changed interactively; the next time hostname
completion is attempted bash adds the contents of the new file to the already existing database.

noclobber
If set, bash does not overwrite an existing file with the >, >&, and <> redirection operators. This
variable may be overridden when creating output files by using the redirection operator >| instead
of > (see also the −C option to the set builtin command).

auto_resume
This variable controls how the shell interacts with the user and job control. If this variable is set,
single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job. There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selected. The name of a stopped job, in this
context, is the command line used to start it. If set to the value exact, the string supplied must
match the name of a stopped job exactly; if set to substring, the string supplied needs to match a
substring of the name of a stopped job. The substring value provides functionality analogous to
the %? job id (see JOB CONTROL below). If set to any other value, the supplied string must be a
prefix of a stopped job’s name; this provides functionality analogous to the % job id.

no_exit_on_failed_exec
If this variable exists, a non-interactive shell will not exit if it cannot execute the file specified in
the exec builtin command. An interactive shell does not exit if exec fails.

cdable_vars
If this is set, an argument to the cd builtin command that is not a directory is assumed to be the
name of a variable whose value is the directory to change to.

EXPANSION

Expansion is performed on the command line after it has been split into words. There are seven kinds of
expansion performed: brace expansion, tilde expansion, parameter and variable expansion, command sub-

stitution, arithmetic expansion, word splitting, and pathname expansion.

The order of expansions is: brace expansion, tilde expansion, parameter, variable, command, and arithmetic
substitution (done in a left−to−right fashion), word splitting, and pathname expansion.

On systems that can support it, there is an additional expansion available: process substitution.

Only brace expansion, word splitting, and pathname expansion can change the number of words of the
expansion; other expansions expand a single word to a single word. The single exception to this is the
expansion of ‘‘$@’’ as explained above (see PARAMETERS).

GNU 1994 July 26 8

BASH(1) BASH(1)

Brace Expansion
Brace expansion is a mechanism by which arbitrary strings may be generated. This mechanism is similar
to pathname expansion, but the filenames generated need not exist. Patterns to be brace expanded take the
form of an optional preamble, followed by a series of comma-separated strings between a pair of braces,
followed by an optional postamble. The preamble is prepended to each string contained within the braces,
and the postamble is then appended to each resulting string, expanding left to right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is
preserved. For example, a{d,c,b}e expands into ‘ade ace abe’.

Brace expansion is performed before any other expansions, and any characters special to other expansions
are preserved in the result. It is strictly textual. Bash does not apply any syntactic interpretation to the con-
text of the expansion or the text between the braces.

A correctly-formed brace expansion must contain unquoted opening and closing braces, and at least one
unquoted comma. Any incorrectly formed brace expansion is left unchanged.

This construct is typically used as shorthand when the common prefix of the strings to be generated is
longer than in the above example:

mkdir /usr/local/src/bash/{old,new,dist,bugs}
or

chown root /usr/{ucb/{ex,edit},lib/{ex?.?*,how_ex}}

Brace expansion introduces a slight incompatibility with traditional versions of sh, the Bourne shell. sh
does not treat opening or closing braces specially when they appear as part of a word, and preserves them in
the output. Bash removes braces from words as a consequence of brace expansion. For example, a word
entered to sh as file{1,2} appears identically in the output. The same word is output as file1 file2 after
expansion by bash. If strict compatibility with sh is desired, start bash with the −nobraceexpansion flag
(see OPTIONS above) or disable brace expansion with the +o braceexpand option to the set command (see
SHELL BUILTIN COMMANDS below).

Tilde Expansion
If a word begins with a tilde character (‘˜’), all of the characters preceding the first slash (or all characters,
if there is no slash) are treated as a possible login name. If this login name is the null string, the tilde is
replaced with the value of the parameter HOME. If HOME is unset, the home directory of the user execut-
ing the shell is substituted instead.

If a ‘+’ follows the tilde, the value of PWD replaces the tilde and ‘+’. If a ‘−’ follows, the value of OLD-

PWD is substituted. If the value following the tilde is a valid login name, the tilde and login name are
replaced with the home directory associated with that name. If the name is invalid, or the tilde expansion
fails, the word is unchanged.

Each variable assignment is checked for unquoted instances of tildes following a : or =. In these cases,
tilde substitution is also performed. Consequently, one may use pathnames with tildes in assignments to
PATH, MAILPATH, and CDPATH, and the shell assigns the expanded value.

Parameter Expansion
The ‘$’ character introduces parameter expansion, command substitution, or arithmetic expansion. The
parameter name or symbol to be expanded may be enclosed in braces, which are optional but serve to pro-
tect the variable to be expanded from characters immediately following it which could be interpreted as part
of the name.

${parameter}
The value of parameter is substituted. The braces are required when parameter is a positional
parameter with more than one digit, or when parameter is followed by a character which is not to
be interpreted as part of its name.

In each of the cases below, word is subject to tilde expansion, parameter expansion, command substitution,
and arithmetic expansion. Bash tests for a parameter that is unset or null; omitting the colon results in a
test only for a parameter that is unset.

GNU 1994 July 26 9

BASH(1) BASH(1)

${parameter:−word}
Use Default Values. If parameter is unset or null, the expansion of word is substituted. Other-
wise, the value of parameter is substituted.

${parameter:=word}
Assign Default Values. If parameter is unset or null, the expansion of word is assigned to param-

eter. The value of parameter is then substituted. Positional parameters and special parameters
may not be assigned to in this way.

${parameter:?word}
Display Error if Null or Unset. If parameter is null or unset, the expansion of word (or a mes-
sage to that effect if word is not present) is written to the standard error and the shell, if it is not
interactive, exits. Otherwise, the value of parameter is substituted.

${parameter:+word}
Use Alternate Value. If parameter is null or unset, nothing is substituted, otherwise the expan-
sion of word is substituted.

${#parameter}
The length in characters of the value of parameter is substituted. If parameter is * or @, the
length substituted is the length of * expanded within double quotes.

${parameter#word}
${parameter##word}

The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches
the beginning of the value of parameter, then the expansion is the value of parameter with the
shortest matching pattern deleted (the ‘‘#’’ case) or the longest matching pattern deleted (the ‘‘##’’
case).

${parameter%word}
${parameter%%word}

The word is expanded to produce a pattern just as in pathname expansion. If the pattern matches a
trailing portion of the value of parameter, then the expansion is the value of parameter with the
shortest matching pattern deleted (the ‘‘%’’ case) or the longest matching pattern deleted (the
‘‘%%’’ case).

Command Substitution
Command substitution allows the output of a command to replace the command name. There are two
forms:

$(command)
or

‘command‘

Bash performs the expansion by executing command and replacing the command substitution with the stan-
dard output of the command, with any trailing newlines deleted.

When the old−style backquote form of substitution is used, backslash retains its literal meaning except
when followed by $, ‘, or \. When using the $(command) form, all characters between the parentheses
make up the command; none are treated specially.

Command substitutions may be nested. To nest when using the old form, escape the inner backquotes with
backslashes.

If the substitution appears within double quotes, word splitting and pathname expansion are not performed
on the results.

Arithmetic Expansion
Arithmetic expansion allows the evaluation of an arithmetic expression and the substitution of the result.
There are two formats for arithmetic expansion:

$[expression]

$((expression))

The expression is treated as if it were within double quotes, but a double quote inside the braces or

GNU 1994 July 26 10

BASH(1) BASH(1)

parentheses is not treated specially. All tokens in the expression undergo parameter expansion, command
substitution, and quote removal. Arithmetic substitutions may be nested.

The evaluation is performed according to the rules listed below under ARITHMETIC EVALUATION. If
expression is invalid, bash prints a message indicating failure and no substitution occurs.

Process Substitution
Process substitution is supported on systems that support named pipes (FIFOs) or the /dev/fd method of
naming open files. It takes the form of <(list) or >(list). The process list is run with its input or output con-
nected to a FIFO or some file in /dev/fd. The name of this file is passed as an argument to the current com-
mand as the result of the expansion. If the >(list) form is used, writing to the file will provide input for list.
If the <(list) form is used, the file passed as an argument should be read to obtain the output of list.

On systems that support it, process substitution is performed simultaneously with parameter and variable

expansion, command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of parameter expansion, command substitution, and arithmetic expansion that
did not occur within double quotes for word splitting.

The shell treats each character of IFS as a delimiter, and splits the results of the other expansions into words
on these characters. If the value of IFS is exactly <space><tab><newline>, the default, then any sequence
of IFS characters serves to delimit words. If IFS has a value other than the default, then sequences of the
whitespace characters space and tab are ignored at the beginning and end of the word, as long as the
whitespace character is in the value of IFS (an IFS whitespace character). Any character in IFS that is not
IFS whitespace, along with any adjacent IFS whitespace characters, delimits a field. A sequence of IFS

whitespace characters is also treated as a delimiter. If the value of IFS is null, no word splitting occurs. IFS

cannot be unset.

Explicit null arguments ("" or ’’) are retained. Implicit null arguments, resulting from the expansion of
parameters that have no values, are removed.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, unless the −f option has been set, bash scans each word for the characters *, ?, and [.
If one of these characters appears, then the word is regarded as a pattern, and replaced with an alphabeti-
cally sorted list of pathnames matching the pattern. If no matching pathnames are found, and the shell vari-
able allow_null_glob_expansion is unset, the word is left unchanged. If the variable is set, and no matches
are found, the word is removed. When a pattern is used for pathname generation, the character ‘‘.’’ at the
start of a name or immediately following a slash must be matched explicitly, unless the shell variable
glob_dot_filenames is set. The slash character must always be matched explicitly. In other cases, the ‘‘.’’
character is not treated specially.

The special pattern characters have the following meanings:

* Matches any string, including the null string.
? Matches any single character.
[...] Matches any one of the enclosed characters. A pair of characters separated by a minus sign

denotes a range; any character lexically between those two characters, inclusive, is matched. If
the first character following the [is a ! or a ˆ then any character not enclosed is matched. A − or]
may be matched by including it as the first or last character in the set.

Quote Removal
After the preceding expansions, all unquoted occurrences of the characters \, ‘, and " are removed.

REDIRECTION

Before a command is executed, its input and output may be redirected using a special notation interpreted
by the shell. Redirection may also be used to open and close files for the current shell execution environ-
ment. The following redirection operators may precede or appear anywhere within a simple command or
may follow a command . Redirections are processed in the order they appear, from left to right.

GNU 1994 July 26 11

BASH(1) BASH(1)

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirec-
tion operator is <, the redirection refers to the standard input (file descriptor 0). If the first character of the
redirection operator is >, the redirection refers to the standard output (file descriptor 1).

The word that follows the redirection operator in the following descriptions is subjected to brace expansion,
tilde expansion, parameter expansion, command substitution, arithmetic expansion, quote removal, and
pathname expansion. If it expands to more than one word, bash reports an error.

Note that the order of redirections is significant. For example, the command

ls > dirlist 2>&1

directs both standard output and standard error to the file dirlist, while the command

ls 2>&1 > dirlist

directs only the standard output to file dirlist, because the standard error was duplicated as standard output
before the standard output was redirected to dirlist.

Redirecting Input
Redirection of input causes the file whose name results from the expansion of word to be opened for read-
ing on file descriptor n, or the standard input (file descriptor 0) if n is not specified.

The general format for redirecting input is:

[n]<word

Redirecting Output
Redirection of output causes the file whose name results from the expansion of word to be opened for writ-
ing on file descriptor n, or the standard output (file descriptor 1) if n is not specified. If the file does not
exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:

[n]>word

If the redirection operator is >|, then the value of the -C option to the set builtin command is not tested, and
file creation is attempted. (See also the description of noclobber under Shell Variables above.)

Appending Redirected Output
Redirection of output in this fashion causes the file whose name results from the expansion of word to be
opened for appending on file descriptor n, or the standard output (file descriptor 1) if n is not specified. If
the file does not exist it is created.

The general format for appending output is:

[n]>>word

Redirecting Standard Output and Standard Error
Bash allows both the standard output (file descriptor 1) and the standard error output (file descriptor 2) to
be redirected to the file whose name is the expansion of word with this construct.

There are two formats for redirecting standard output and standard error:

&>word

and
>&word

Of the two forms, the first is preferred. This is semantically equivalent to

>word 2>&1

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing only
word (with no trailing blanks) is seen. All of the lines read up to that point are then used as the standard
input for a command.

The format of here-documents is as follows:

GNU 1994 July 26 12

BASH(1) BASH(1)

<<[−]word

here-document

delimiter

No parameter expansion, command substitution, pathname expansion, or arithmetic expansion is performed
on word . If any characters in word are quoted, the delimiter is the result of quote removal on word , and the
lines in the here-document are not expanded. Otherwise, all lines of the here-document are subjected to
parameter expansion, command substitution, and arithmetic expansion. In the latter case, the pair \<new-
line> is ignored, and \ must be used to quote the characters \, $, and ‘.

If the redirection operator is <<−, then all leading tab characters are stripped from input lines and the line
containing delimiter. This allows here-documents within shell scripts to be indented in a natural fashion.

Duplicating File Descriptors
The redirection operator

[n]<&word

is used to duplicate input file descriptors. If word expands to one or more digits, the file descriptor denoted
by n is made to be a copy of that file descriptor. If word evaluates to −, file descriptor n is closed. If n is
not specified, the standard input (file descriptor 0) is used.

The operator

[n]>&word

is used similarly to duplicate output file descriptors. If n is not specified, the standard output (file descriptor
1) is used. As a special case, if n is omitted, and word does not expand to one or more digits, the standard
output and standard error are redirected as described previously.

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansion of word to be opened for both reading and writing on file
descriptor n, or as the standard input and standard output if n is not specified. If the file does not exist, it is
created.

FUNCTIONS

A shell function, defined as described above under SHELL GRAMMAR, stores a series of commands for
later execution. Functions are executed in the context of the current shell; no new process is created to
interpret them (contrast this with the execution of a shell script). When a function is executed, the argu-
ments to the function become the positional parameters during its execution. The special parameter # is
updated to reflect the change. Positional parameter 0 is unchanged.

Variables local to the function may be declared with the local builtin command. Ordinarily, variables and
their values are shared between the function and its caller.

If the builtin command return is executed in a function, the function completes and execution resumes with
the next command after the function call. When a function completes, the values of the positional parame-
ters and the special parameter # are restored to the values they had prior to function execution.

Function names may be listed with the −f option to the declare or typeset builtin commands. Functions
may be exported so that subshells automatically have them defined with the −f option to the export builtin.

Functions may be recursive. No limit is imposed on the number of recursive calls.

ALIASES

The shell maintains a list of aliases that may be set and unset with the alias and unalias builtin commands
(see SHELL BUILTIN COMMANDS below). The first word of each command, if unquoted, is checked to
see if it has an alias. If so, that word is replaced by the text of the alias. The alias name and the replace-
ment text may contain any valid shell input, including the metacharacters listed above, with the exception
that the alias name may not contain =. The first word of the replacement text is tested for aliases, but a
word that is identical to an alias being expanded is not expanded a second time. This means that one may

GNU 1994 July 26 13

BASH(1) BASH(1)

alias ls to ls −F, for instance, and bash does not try to recursively expand the replacement text. If the last
character of the alias value is a blank, then the next command word following the alias is also checked for
alias expansion.

Aliases are created and listed with the alias command, and removed with the unalias command.

There is no mechanism for using arguments in the replacement text, as in csh. If arguments are needed, a
shell function should be used.

Aliases are not expanded when the shell is not interactive.

The rules concerning the definition and use of aliases are somewhat confusing. Bash always reads at least
one complete line of input before executing any of the commands on that line. Aliases are expanded when
a command is read, not when it is executed. Therefore, an alias definition appearing on the same line as
another command does not take effect until the next line of input is read. This means that the commands
following the alias definition on that line are not affected by the new alias. This behavior is also an issue
when functions are executed. Aliases are expanded when the function definition is read, not when the func-
tion is executed, because a function definition is itself a compound command. As a consequence, aliases
defined in a function are not available until after that function is executed. To be safe, always put alias defi-
nitions on a separate line, and do not use alias in compound commands.

Note that for almost every purpose, aliases are superseded by shell functions.

JOB CONTROL

Job control refers to the ability to selectively stop (suspend) the execution of processes and continue
(resume) their execution at a later point. A user typically employs this facility via an interactive interface
supplied jointly by the system’s terminal driver and bash.

The shell associates a job with each pipeline. It keeps a table of currently executing jobs, which may be
listed with the jobs command. When bash starts a job asynchronously (in the background), it prints a line
that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated
with this job is 25647. All of the processes in a single pipeline are members of the same job. Bash uses
the job abstraction as the basis for job control.

To facilitate the implementation of the user interface to job control, the system maintains the notion of a
current terminal process group ID. Members of this process group (processes whose process group ID is
equal to the current terminal process group ID) receive keyboard-generated signals such as SIGINT. These
processes are said to be in the foreground . Background processes are those whose process group ID differs
from the terminal’s; such processes are immune to keyboard-generated signals. Only foreground processes
are allowed to read from or write to the terminal. Background processes which attempt to read from (write
to) the terminal are sent a SIGTTIN (SIGTTOU) signal by the terminal driver, which, unless caught, sus-
pends the process.

If the operating system on which bash is running supports job control, bash allows you to use it. Typing
the suspend character (typically ˆZ, Control-Z) while a process is running causes that process to be stopped
and returns you to bash. Typing the delayed suspend character (typically ˆY, Control-Y) causes the process
to be stopped when it attempts to read input from the terminal, and control to be returned to bash. You may
then manipulate the state of this job, using the bg command to continue it in the background, the fg com-
mand to continue it in the foreground, or the kill command to kill it. A ˆZ takes effect immediately, and
has the additional side effect of causing pending output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % introduces a job name. Job
number n may be referred to as %n. A job may also be referred to using a prefix of the name used to start
it, or using a substring that appears in its command line. For example, %ce refers to a stopped ce job. If a
prefix matches more than one job, bash reports an error. Using %?ce, on the other hand, refers to any job
containing the string ce in its command line. If the substring matches more than one job, bash reports an
error. The symbols %% and %+ refer to the shell’s notion of the current job, which is the last job stopped
while it was in the foreground. The previous job may be referenced using %−. In output pertaining to jobs

GNU 1994 July 26 14

BASH(1) BASH(1)

(e.g., the output of the jobs command), the current job is always flagged with a +, and the previous job with
a −.

Simply naming a job can be used to bring it into the foreground: %1 is a synonym for ‘‘fg %1’’, bringing
job 1 from the background into the foreground. Similarly, ‘‘%1 &’’ resumes job 1 in the background,
equivalent to ‘‘bg %1’’.

The shell learns immediately whenever a job changes state. Normally, bash waits until it is about to print a
prompt before reporting changes in a job’s status so as to not interrupt any other output. If the -b option to
the set builtin command is set, bash reports such changes immediately. (See also the description of notify
variable under Shell Variables above.)

If you attempt to exit bash while jobs are stopped, the shell prints a message warning you. You may then
use the jobs command to inspect their status. If you do this, or try to exit again immediately, you are not
warned again, and the stopped jobs are terminated.

SIGNALS

When bash is interactive, it ignores SIGTERM (so that kill 0 does not kill an interactive shell), and SIGINT

is caught and handled (so that the wait builtin is interruptible). In all cases, bash ignores SIGQUIT. If job
control is in effect, bash ignores SIGTTIN, SIGTTOU, and SIGTSTP.

Synchronous jobs started by bash have signals set to the values inherited by the shell from its parent.
When job control is not in effect, background jobs (jobs started with &) ignore SIGINT and SIGQUIT.

Commands run as a result of command substitution ignore the keyboard-generated job control signals
SIGTTIN, SIGTTOU, and SIGTSTP.

COMMAND EXECUTION

After a command has been split into words, if it results in a simple command and an optional list of argu-
ments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by
that name, that function is invoked as described above in FUNCTIONS. If the name does not match a func-
tion, the shell searches for it in the list of shell builtins. If a match is found, that builtin is invoked.

If the name is neither a shell function nor a builtin, and contains no slashes, bash searches each element of
the PATH for a directory containing an executable file by that name. If the search is unsuccessful, the shell
prints an error message and returns a nonzero exit status.

If the search is successful, or if the command name contains one or more slashes, the shell executes the
named program. Argument 0 is set to the name given, and the remaining arguments to the command are set
to the arguments given, if any.

If this execution fails because the file is not in executable format, and the file is not a directory, it is
assumed to be a shell script, a file containing shell commands. A subshell is spawned to execute it. This
subshell reinitializes itself, so that the effect is as if a new shell had been invoked to handle the script, with
the exception that the locations of commands remembered by the parent (see hash below under SHELL

BUILTIN COMMANDS) are retained by the child.

If the program is a file beginning with #!, the remainder of the first line specifies an interpreter for the pro-
gram. The shell executes the specified interpreter on operating systems that do not handle this executable
format themselves. The arguments to the interpreter consist of a single optional argument following the
interpreter name on the first line of the program, followed by the name of the program, followed by the
command arguments, if any.

ENVIRONMENT

When a program is invoked it is giv en an array of strings called the environment. This is a list of
name−value pairs, of the form name=value.

The shell allows you to manipulate the environment in several ways. On invocation, the shell scans its own
environment and creates a parameter for each name found, automatically marking it for export to child pro-
cesses. Executed commands inherit the environment. The export and declare −x commands allow param-
eters and functions to be added to and deleted from the environment. If the value of a parameter in the

GNU 1994 July 26 15

BASH(1) BASH(1)

environment is modified, the new value becomes part of the environment, replacing the old. The environ-
ment inherited by any executed command consists of the shell’s initial environment, whose values may be
modified in the shell, less any pairs removed by the unset command, plus any additions via the export and
declare −x commands.

The environment for any simple command or function may be augmented temporarily by prefixing it with
parameter assignments, as described above in PARAMETERS. These assignment statements affect only the
environment seen by that command.

If the −k flag is set (see the set builtin command below), then all parameter assignments are placed in the
environment for a command, not just those that precede the command name.

When bash invokes an external command, the variable _ is set to the full path name of the command and
passed to that command in its environment.

EXIT STATUS

For the purposes of the shell, a command which exits with a zero exit status has succeeded. An exit status
of zero indicates success. A non−zero exit status indicates failure. When a command terminates on a fatal
signal, bash uses the value of 128+signal as the exit status.

If a command is not found, the child process created to execute it returns a status of 127. If a command is
found but is not executable, the return status is 126.

Bash itself returns the exit status of the last command executed, unless a syntax error occurs, in which case
it exits with a non−zero value. See also the exit builtin command below.

PROMPTING

When executing interactively, bash displays the primary prompt PS1 when it is ready to read a command,
and the secondary prompt PS2 when it needs more input to complete a command. Bash allows these
prompt strings to be customized by inserting a number of backslash-escaped special characters that are
decoded as follows:

\t the current time in HH:MM:SS format
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\n newline
\s the name of the shell, the basename of $0 (the portion following the final slash)
\w the current working directory
\W the basename of the current working directory
\u the username of the current user
\h the hostname
\# the command number of this command
\! the history number of this command
\$ if the effective UID is 0, a #, otherwise a $
\nnn the character corresponding to the octal number nnn
\\ a backslash
\[begin a sequence of non-printing characters, which could be used to embed a terminal

control sequence into the prompt
\] end a sequence of non-printing characters

The command number and the history number are usually different: the history number of a command is its
position in the history list, which may include commands restored from the history file (see HISTORY

below), while the command number is the position in the sequence of commands executed during the cur-
rent shell session. After the string is decoded, it is expanded via parameter expansion, command substitu-
tion, arithmetic expansion, and word splitting.

READLINE

This is the library that handles reading input when using an interactive shell, unless the −nolineediting
option is given. By default, the line editing commands are similar to those of emacs. A vi-style line editing
interface is also available.

In this section, the emacs-style notation is used to denote keystrokes. Control keys are denoted by C−key,

GNU 1994 July 26 16

BASH(1) BASH(1)

e.g., C−n means Control−N. Similarly, meta keys are denoted by M−key, so M−x means Meta−X. (On
keyboards without a meta key, M−x means ESC x, i.e., press the Escape key then the x key. This makes
ESC the meta prefix. The combination M−C−x means ESC−Control−x, or press the Escape key then hold
the Control key while pressing the x key.)

The default key-bindings may be changed with an ˜/.inputrc file. The value of the shell variable INPU-

TRC, if set, is used instead of ˜/.inputrc. Other programs that use this library may add their own commands
and bindings.

For example, placing

M−Control−u: universal−argument
or

C−Meta−u: universal−argument
into the ˜/.inputrc would make M−C−u execute the readline command universal−argument.

The following symbolic character names are recognized: RUBOUT , DEL, ESC, LFD, NEWLINE, RET ,
RETURN , SPC, SPACE, and TAB. In addition to command names, readline allows keys to be bound to a
string that is inserted when the key is pressed (a macro).

Readline is customized by putting commands in an initialization file. The name of this file is taken from
the value of the INPUTRC variable. If that variable is unset, the default is ˜/.inputrc. When a program
which uses the readline library starts up, the init file is read, and the key bindings and variables are set.
There are only a few basic constructs allowed in the readline init file. Blank lines are ignored. Lines begin-
ning with a # are comments. Lines beginning with a $ indicate conditional constructs. Other lines denote
key bindings and variable settings.

The syntax for controlling key bindings in the ˜/.inputrc file is simple. All that is required is the name of
the command or the text of a macro and a key sequence to which it should be bound. The name may be
specified in one of two ways: as a symbolic key name, possibly with Meta- or Control- prefixes, or as a key
sequence. When using the form keyname:function-name or macro, keyname is the name of a key spelled
out in English. For example:

Control-u: universal−argument
Meta-Rubout: backward-kill-word
Control-o: ">&output"

In the above example, C-u is bound to the function universal−argument, M-DEL is bound to the function
backward−kill−word, and C-o is bound to run the macro expressed on the right hand side (that is, to insert
the text >&output into the line).

In the second form, "keyseq":function-name or macro, keyseq differs from keyname above in that strings
denoting an entire key sequence may be specified by placing the sequence within double quotes. Some
GNU Emacs style key escapes can be used, as in the following example.

"\C-u": universal−argument
"\C-x\C-r": re−read−init−file
"\e[11˜": "Function Key 1"

In this example, C-u is again bound to the function universal−argument. C-x C-r is bound to the function
re−read−init−file, and ESC [1 1 ˜ is bound to insert the text Function Key 1. The full set of escape
sequences is

\C− control prefix

\M- meta prefix

\e an escape character

\\ backslash

\" literal "

GNU 1994 July 26 17

BASH(1) BASH(1)

\’ literal ’

When entering the text of a macro, single or double quotes should be used to indicate a macro definition.
Unquoted text is assumed to be a function name. Backslash will quote any character in the macro text,
including " and ’.

Bash allows the current readline key bindings to be displayed or modified with the bind builtin command.
The editing mode may be switched during interactive use by using the −o option to the set builtin command
(see SHELL BUILTIN COMMANDS below).

Readline has variables that can be used to further customize its behavior. A variable may be set in the inpu-

trc file with a statement of the form

set variable−name value

Except where noted, readline variables can take the values On or Off. The variables and their default val-
ues are:

horizontal−scroll−mode (Off)
When set to On, makes readline use a single line for display, scrolling the input horizontally on a
single screen line when it becomes longer than the screen width rather than wrapping to a new
line.

editing−mode (emacs)
Controls whether readline begins with a set of key bindings similar to emacs or vi. editing−mode
can be set to either emacs or vi.

mark−modified−lines (Off)
If set to On, history lines that have been modified are displayed with a preceding asterisk (*).

bell−style (audible)
Controls what happens when readline wants to ring the terminal bell. If set to none, readline never
rings the bell. If set to visible, readline uses a visible bell if one is available. If set to audible,
readline attempts to ring the terminal’s bell.

comment−begin (‘‘#’’)
The string that is inserted in vi mode when the vi−comment command is executed.

meta−flag (Off)
If set to On, readline will enable eight-bit input (that is, it will not strip the high bit from the char-
acters it reads), regardless of what the terminal claims it can support.

convert−meta (On)
If set to On, readline will convert characters with the eighth bit set to an ASCII key sequence by
stripping the eighth bit and prepending an escape character (in effect, using escape as the meta

prefix).
output−meta (Off)

If set to On, readline will display characters with the eighth bit set directly rather than as a meta-
prefixed escape sequence.

completion−query−items (100)
This determines when the user is queried about viewing the number of possible completions gen-
erated by the possible−completions command. It may be set to any integer value greater than or
equal to zero. If the number of possible completions is greater than or equal to the value of this
variable, the user is asked whether or not he wishes to view them; otherwise they are simply listed
on the terminal.

keymap (emacs)
Set the current readline keymap. The set of legal keymap names is emacs, emacs-standard,

emacs-meta, emacs-ctlx, vi, vi-move, vi-command, and vi-insert. vi is equivalent to vi-command;
emacs is equivalent to emacs-standard. The default value is emacs; the value of editing−mode
also affects the default keymap.

show−all−if−ambiguous (Off)
This alters the default behavior of the completion functions. If set to on, words which have more
than one possible completion cause the matches to be listed immediately instead of ringing the
bell.

GNU 1994 July 26 18

BASH(1) BASH(1)

expand−tilde (Off)
If set to on, tilde expansion is performed when readline attempts word completion.

Readline implements a facility similar in spirit to the conditional compilation features of the C preprocessor
which allows key bindings and variable settings to be performed as the result of tests. There are three
parser directives used.

$if The $if construct allows bindings to be made based on the editing mode, the terminal being used,
or the application using readline. The text of the test extends to the end of the line; no characters
are required to isolate it.

mode The mode= form of the $if directive is used to test whether readline is in emacs or vi
mode. This may be used in conjunction with the set keymap command, for instance, to
set bindings in the emacs-standard and emacs-ctlx keymaps only if readline is starting out
in emacs mode.

term The term= form may be used to include terminal-specific key bindings, perhaps to bind
the key sequences output by the terminal’s function keys. The word on the right side of
the = is tested against the full name of the terminal and the portion of the terminal name
before the first −. This allows sun to match both sun and sun−cmd , for instance.

application
The application construct is used to include application−specific settings. Each program
using the readline library sets the application name, and an initialization file can test for a
particular value. This could be used to bind key sequences to functions useful for a spe-
cific program. For instance, the following command adds a key sequence that quotes the
current or previous word in Bash:
$if Bash
Quote the current or previous word
"\C-xq": "\eb\"\ef\""
$endif

$endif This command, as you saw in the previous example, terminates an $if command.

$else Commands in this branch of the $if directive are executed if the test fails.

Readline commands may be given numeric arguments, which normally act as a repeat count. Sometimes,
however, it is the sign of the argument that is significant. Passing a negative argument to a command that
acts in the forward direction (e.g., kill−line) causes that command to act in a backward direction. Com-
mands whose behavior with arguments deviates from this are noted.

When a command is described as killing text, the text deleted is saved for possible future retrieval (yank-

ing). The killed text is saved in a kill−ring. Consecutive kills cause the text to be accumulated into one
unit, which can be yanked all at once. Commands which do not kill text separate the chunks of text on the
kill−ring.

The following is a list of the names of the commands and the default key sequences to which they are
bound.

Commands for Moving
beginning−of−line (C−a)

Move to the start of the current line.
end−of−line (C−e)

Move to the end of the line.
forward−char (C−f)

Move forward a character.
backward−char (C−b)

Move back a character.
forward−word (M−f)

Move forward to the end of the next word. Words are composed of alphanumeric characters (let-
ters and digits).

GNU 1994 July 26 19

BASH(1) BASH(1)

backward−word (M−b)
Move back to the start of this, or the previous, word. Words are composed of alphanumeric char-
acters (letters and digits).

clear−screen (C−l)
Clear the screen leaving the current line at the top of the screen. With an argument, refresh the
current line without clearing the screen.

redraw−current−line
Refresh the current line. By default, this is unbound.

Commands for Manipulating the History
accept−line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non−empty, add it to the history list
according to the state of the HISTCONTROL variable. If the line is a modified history line, then
restore the history line to its original state.

previous−history (C−p)
Fetch the previous command from the history list, moving back in the list.

next−history (C−n)
Fetch the next command from the history list, moving forward in the list.

beginning−of−history (M−<)
Move to the first line in the history.

end−of−history (M−>)
Move to the end of the input history, i.e., the line currently being entered.

re verse−search−history (C−r)
Search backward starting at the current line and moving ‘up’ through the history as necessary.
This is an incremental search.

forward−search−history (C−s)
Search forward starting at the current line and moving ‘down’ through the history as necessary.
This is an incremental search.

non−incremental−rev erse−search−history (M−p)
Search backward through the history starting at the current line using a non−incremental search
for a string supplied by the user.

non−incremental−forward−search−history (M−n)
Search forward through the history using a non−incremental search for a string supplied by the
user.

history−search−forward
Search forward through the history for the string of characters between the start of the current line
and the current point. This is a non-incremental search. By default, this command is unbound.

history−search−backward
Search backward through the history for the string of characters between the start of the current
line and the current point. This is a non-incremental search. By default, this command is
unbound.

yank−nth−arg (M−C−y)
Insert the first argument to the previous command (usually the second word on the previous line)
at point (the current cursor position). With an argument n, insert the nth word from the previous
command (the words in the previous command begin with word 0). A neg ative argument inserts
the nth word from the end of the previous command.

yank−last−arg (M−. , M−_)
Insert the last argument to the previous command (the last word on the previous line). With an
argument, behave exactly like @code{yank-nth-arg}.

shell−expand−line (M−C−e)
Expand the line the way the shell does when it reads it. This performs alias and history expansion
as well as all of the shell word expansions. See HISTORY EXPANSION below for a description of
history expansion.

GNU 1994 July 26 20

BASH(1) BASH(1)

history−expand−line (M−ˆ)
Perform history expansion on the current line. See HISTORY EXPANSION below for a descrip-
tion of history expansion.

insert−last−argument (M−., M−_)
A synonym for yank−last−arg.

operate-and-get-next (C−o)
Accept the current line for execution and fetch the next line relative to the current line from the
history for editing. Any argument is ignored.

Commands for Changing Text
delete−char (C−d)

Delete the character under the cursor. If point is at the beginning of the line, there are no charac-
ters in the line, and the last character typed was not C−d, then return EOF.

backward−delete−char (Rubout)
Delete the character behind the cursor. When given a numeric argument, save the deleted text on
the kill−ring.

quoted−insert (C−q, C−v)
Add the next character that you type to the line verbatim. This is how to insert characters like
C−q, for example.

tab−insert (C-v TAB)
Insert a tab character.

self−insert (a, b, A, 1, !, ...)
Insert the character typed.

transpose−chars (C−t)
Drag the character before point forward over the character at point. Point moves forward as well.
If point is at the end of the line, then transpose the two characters before point. Negative argu-
ments don’t work.

transpose−words (M−t)
Drag the word behind the cursor past the word in front of the cursor moving the cursor over that
word as well.

upcase−word (M−u)
Uppercase the current (or following) word. With a negative argument, do the previous word, but
do not move point.

downcase−word (M−l)
Lowercase the current (or following) word. With a negative argument, do the previous word, but
do not move point.

capitalize−word (M−c)
Capitalize the current (or following) word. With a negative argument, do the previous word, but
do not move point.

Killing and Yanking
kill−line (C−k)

Kill the text from the current cursor position to the end of the line.
backward−kill−line (C−x C−Rubout)

Kill backward to the beginning of the line.
unix−line−discard (C−u)

Kill backward from point to the beginning of the line.
kill−whole−line

Kill all characters on the current line, no matter where the cursor is. By default, this is unbound.
kill−word (M−d)

Kill from the cursor to the end of the current word, or if between words, to the end of the next
word. Word boundaries are the same as those used by forward−word.

backward−kill−word (M−Rubout)
Kill the word behind the cursor. Word boundaries are the same as those used by back-
ward−word.

GNU 1994 July 26 21

BASH(1) BASH(1)

unix−word−rubout (C−w)
Kill the word behind the cursor, using white space as a word boundary. The word boundaries are
different from backward−kill−word.

delete−horizontal−space
Delete all spaces and tabs around point. By default, this is unbound.

yank (C−y)
Yank the top of the kill ring into the buffer at the cursor.

yank−pop (M−y)
Rotate the kill−ring, and yank the new top. Only works following yank or yank−pop.

Numeric Arguments
digit−argument (M−0, M−1, ..., M−−)

Add this digit to the argument already accumulating, or start a new argument. M−− starts a neg-
ative argument.

universal−argument
Each time this is executed, the argument count is multiplied by four. The argument count is ini-
tially one, so executing this function the first time makes the argument count four. By default, this
is not bound to a key.

Completing
complete (TAB)

Attempt to perform completion on the text before point. Bash attempts completion treating the
text as a variable (if the text begins with $), username (if the text begins with ˜), hostname (if the
text begins with @), or command (including aliases and functions) in turn. If none of these pro-
duces a match, filename completion is attempted.

possible−completions (M-?)
List the possible completions of the text before point.

insert−completions
Insert all completions of the text before point that would have been generated by possi-
ble−completions. By default, this is not bound to a key.

complete−filename (M−/)
Attempt filename completion on the text before point.

possible−filename−completions (C−x /)
List the possible completions of the text before point, treating it as a filename.

complete−username (M−˜)
Attempt completion on the text before point, treating it as a username.

possible−username−completions (C−x ˜)
List the possible completions of the text before point, treating it as a username.

complete−variable (M−$)
Attempt completion on the text before point, treating it as a shell variable.

possible−variable−completions (C−x $)
List the possible completions of the text before point, treating it as a shell variable.

complete−hostname (M−@)
Attempt completion on the text before point, treating it as a hostname.

possible−hostname−completions (C−x @)
List the possible completions of the text before point, treating it as a hostname.

complete−command (M−!)
Attempt completion on the text before point, treating it as a command name. Command comple-
tion attempts to match the text against aliases, reserved words, shell functions, builtins, and finally
executable filenames, in that order.

possible−command−completions (C−x !)
List the possible completions of the text before point, treating it as a command name.

dynamic−complete−history (M-TAB)
Attempt completion on the text before point, comparing the text against lines from the history list
for possible completion matches.

GNU 1994 July 26 22

BASH(1) BASH(1)

complete−into−braces (M−{)
Perform filename completion and return the list of possible completions enclosed within braces so
the list is available to the shell (see Brace Expansion above).

Keyboard Macros
start−kbd−macro (C-x ()

Begin saving the characters typed into the current keyboard macro.
end−kbd−macro (C-x))

Stop saving the characters typed into the current keyboard macro and save the definition.
call−last−kbd−macro (C-x e)

Re-execute the last keyboard macro defined, by making the characters in the macro appear as if
typed at the keyboard.

Miscellaneous
re−read−init−file (C−x C−r)

Read in the contents of your init file, and incorporate any bindings or variable assignments found
there.

abort (C−g)
Abort the current editing command and ring the terminal’s bell (subject to the setting of
bell−style).

do−uppercase−version (M−a, M−b, ...)
Run the command that is bound to the corresponding uppercase character.

prefix−meta (ESC)
Metafy the next character typed. ESC f is equivalent to Meta−f.

undo (C−_, C−x C−u)
Incremental undo, separately remembered for each line.

re vert−line (M−r)
Undo all changes made to this line. This is like typing the undo command enough times to return
the line to its initial state.

tilde−expand (M−˜)
Perform tilde expansion on the current word.

dump−functions
Print all of the functions and their key bindings to the readline output stream. If a numeric argu-
ment is supplied, the output is formatted in such a way that it can be made part of an inputrc file.

display−shell−version (C−x C−v)
Display version information about the current instance of bash.

emacs−editing−mode (C−e)
When in vi editing mode, this causes a switch to emacs editing mode.

HISTORY

When interactive, the shell provides access to the command history, the list of commands previously typed.
The text of the last HISTSIZE commands (default 500) is saved in a history list. The shell stores each com-
mand in the history list prior to parameter and variable expansion (see EXPANSION above) but after history
expansion is performed, subject to the values of the shell variables command_oriented_history and HIST-

CONTROL. On startup, the history is initialized from the file named by the variable HISTFILE (default
˜/.bash_history). HISTFILE is truncated, if necessary, to contain no more than HISTFILESIZE lines. The
builtin command fc (see SHELL BUILTIN COMMANDS below) may be used to list or edit and re-execute a
portion of the history list. The history builtin can be used to display the history list and manipulate the his-
tory file. When using the command-line editing, search commands are available in each editing mode that
provide access to the history list. When an interactive shell exits, the last HISTSIZE lines are copied from
the history list to HISTFILE. If HISTFILE is unset, or if the history file is unwritable, the history is not
saved.

HISTORY EXPANSION

The shell supports a history expansion feature that is similar to the history expansion in csh. This section
describes what syntax features are available. This feature is enabled by default for interactive shells, and
can be disabled using the +H option to the set builtin command (see SHELL BUILTIN COMMANDS

GNU 1994 July 26 23

BASH(1) BASH(1)

below). Non-interactive shells do not perform history expansion.

History expansion is performed immediately after a complete line is read, before the shell breaks it into
words. It takes place in two parts. The first is to determine which line from the previous history to use dur-
ing substitution. The second is to select portions of that line for inclusion into the current one. The line
selected from the previous history is the event, and the portions of that line that are acted upon are words.
The line is broken into words in the same fashion as when reading input, so that several metacharac-

ter−separated words surrounded by quotes are considered as one word. Only backslash (\) and single
quotes can quote the history escape character, which is ! by default.

The shell allows control of the various characters used by the history expansion mechanism (see the
description of histchars above under Shell Variables).

Event Designators
An event designator is a reference to a command line entry in the history list.

! Start a history substitution, except when followed by a blank, newline, = or (.
!! Refer to the previous command. This is a synonym for ‘!−1’.
!n Refer to command line n.
!−n Refer to the current command line minus n.
!string Refer to the most recent command starting with string.
!?string[?]

Refer to the most recent command containing string.

ˆstring1ˆstring2ˆ
Quick substitution. Repeat the last command, replacing string1 with string2. Equivalent to
‘‘!!:s/string1/string2/’’ (see Modifiers below).

!# The entire command line typed so far.

Word Designators
A : separates the event specification from the word designator. It can be omitted if the word designator
begins with a ˆ, $, *, or %. Words are numbered from the beginning of the line, with the first word being
denoted by a 0 (zero).

0 (zero)
The zeroth word. For the shell, this is the command word.

n The nth word.
ˆ The first argument. That is, word 1.
$ The last argument.
% The word matched by the most recent ‘?string?’ search.
x−y A range of words; ‘−y’ abbreviates ‘0−y’.
* All of the words but the zeroth. This is a synonym for ‘1−$’. It is not an error to use * if there is

just one word in the event; the empty string is returned in that case.
x* Abbreviates x−$.
x− Abbreviates x−$ like x*, but omits the last word.

Modifiers
After the optional word designator, you can add a sequence of one or more of the following modifiers, each
preceded by a ‘:’.

h Remove a trailing pathname component, leaving only the head.
r Remove a trailing suffix of the form .xxx, leaving the basename.
e Remove all but the trailing suffix.
t Remove all leading pathname components, leaving the tail.
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Quote the substituted words as with q, but break into words at blanks and newlines.
s/old/new/

Substitute new for the first occurrence of old in the event line. Any delimiter can be used in place
of /. The final delimiter is optional if it is the last character of the event line. The delimiter may

GNU 1994 July 26 24

BASH(1) BASH(1)

be quoted in old and new with a single backslash. If & appears in new, it is replaced by old . A
single backslash will quote the &.

& Repeat the previous substitution.
g Cause changes to be applied over the entire event line. This is used in conjunction with ‘:s’ (e.g.,

‘:gs/old/new/’) or ‘:&’. If used with ‘:s’, any delimiter can be used in place of /, and the final
delimiter is optional if it is the last character of the event line.

ARITHMETIC EVALUATION

The shell allows arithmetic expressions to be evaluated, under certain circumstances (see the let builtin
command and Arithmetic Expansion). Evaluation is done in long integers with no check for overflow,
though division by 0 is trapped and flagged as an error. The following list of operators is grouped into lev-
els of equal-precedence operators. The levels are listed in order of decreasing precedence.

− + unary minus and plus
! ˜ logical and bitwise negation
* / % multiplication, division, remainder
+ − addition, subtraction
<< >> left and right bitwise shifts
<= >= < >

comparison
== != equality and inequality
& bitwise AND
ˆ bitwise exclusive OR
| bitwise OR
&& logical AND
|| logical OR
= *= /= %= += −= <<= >>= &= ˆ= |=

assignment

Shell variables are allowed as operands; parameter expansion is performed before the expression is evalu-
ated. The value of a parameter is coerced to a long integer within an expression. A shell variable need not
have its integer attribute turned on to be used in an expression.

Constants with a leading 0 are interpreted as octal numbers. A leading 0x or 0X denotes hexadecimal. Oth-
erwise, numbers take the form [base#]n, where base is a decimal number between 2 and 36 representing the
arithmetic base, and n is a number in that base. If base is omitted, then base 10 is used.

Operators are evaluated in order of precedence. Sub-expressions in parentheses are evaluated first and may
override the precedence rules above.

SHELL BUILTIN COMMANDS

: [arguments]
No effect; the command does nothing beyond expanding arguments and performing any specified
redirections. A zero exit code is returned.

. filename [arguments]
source filename [arguments]

Read and execute commands from filename in the current shell environment and return the exit
status of the last command executed from filename. If filename does not contain a slash, path-
names in PATH are used to find the directory containing filename. The file searched for in PATH

need not be executable. The current directory is searched if no file is found in PATH. If any argu-

ments are supplied, they become the positional parameters when file is executed. Otherwise the
positional parameters are unchanged. The return status is the status of the last command exited
within the script (0 if no commands are executed), and false if filename is not found.

alias [name[=value] ...]
Alias with no arguments prints the list of aliases in the form name=value on standard output.
When arguments are supplied, an alias is defined for each name whose value is given. A trailing
space in value causes the next word to be checked for alias substitution when the alias is

GNU 1994 July 26 25

BASH(1) BASH(1)

expanded. For each name in the argument list for which no value is supplied, the name and value
of the alias is printed. Alias returns true unless a name is given for which no alias has been
defined.

bg [jobspec]
Place jobspec in the background, as if it had been started with &. If jobspec is not present, the
shell’s notion of the current job is used. bg jobspec returns 0 unless run when job control is dis-
abled or, when run with job control enabled, if jobspec was not found or started without job con-
trol.

bind [−m keymap] [−lvd] [-q name]
bind [−m keymap] -f filename

bind [−m keymap] keyseq:function-name

Display current readline key and function bindings, or bind a key sequence to a readline function
or macro. The binding syntax accepted is identical to that of .inputrc, but each binding must be
passed as a separate argument; e.g., ’"\C-x\C-r": re−read−init−file’. Options, if supplied, have the
following meanings:
−m keymap

Use keymap as the keymap to be affected by the subsequent bindings. Acceptable
keymap names are emacs, emacs-standard, emacs-meta, emacs-ctlx, vi, vi-move, vi-

command, and vi-insert. vi is equivalent to vi-command; emacs is equivalent to emacs-

standard.
−l List the names of all readline functions
−v List current function names and bindings
−d Dump function names and bindings in such a way that they can be re-read
−f filename

Read key bindings from filename

−q function

Query about which keys inv oke the named function

The return value is 0 unless an unrecognized option is given or an error occurred.

break [n]
Exit from within a for, while, or until loop. If n is specified, break n levels. n must be ≥ 1. If n is
greater than the number of enclosing loops, all enclosing loops are exited. The return value is 0
unless the shell is not executing a loop when break is executed.

builtin shell−builtin [arguments]
Execute the specified shell builtin, passing it arguments, and return its exit status. This is useful
when you wish to define a function whose name is the same as a shell builtin, but need the func-
tionality of the builtin within the function itself. The cd builtin is commonly redefined this way.
The return status is false if shell−builtin is not a shell builtin command.

cd [dir] Change the current directory to dir. The variable HOME is the default dir. The variable CDPATH

defines the search path for the directory containing dir. Alternative directory names are separated
by a colon (:). A null directory name in CDPATH is the same as the current directory, i.e., ‘‘.’’. If
dir begins with a slash (/), then CDPATH is not used. An argument of − is equivalent to $OLD-

PWD. The return value is true if the directory was successfully changed; false otherwise.

command [-pVv] command [arg ...]
Run command with args suppressing the normal shell function lookup. Only builtin commands or
commands found in the PATH are executed. If the −p option is given, the search for command is
performed using a default value for PATH that is guaranteed to find all of the standard utilities. If
either the −V or −v option is supplied, a description of command is printed. The −v option causes
a single word indicating the command or pathname used to invoke command to be printed; the −V
option produces a more verbose description. An argument of −− disables option checking for the
rest of the arguments. If the −V or −v option is supplied, the exit status is 0 if command was
found, and 1 if not. If neither option is supplied and an error occurred or command cannot be
found, the exit status is 127. Otherwise, the exit status of the command builtin is the exit status of

GNU 1994 July 26 26

BASH(1) BASH(1)

command .

continue [n]
Resume the next iteration of the enclosing for, while, or until loop. If n is specified, resume at the
nth enclosing loop. n must be ≥ 1. If n is greater than the number of enclosing loops, the last
enclosing loop (the ‘top−level’ loop) is resumed. The return value is 0 unless the shell is not
executing a loop when continue is executed.

declare [−frxi] [name[=value]]
typeset [−frxi] [name[=value]]

Declare variables and/or give them attributes. If no names are given, then display the values of
variables instead. The options can be used to restrict output to variables with the specified
attribute.
−f Use function names only
−r Make names readonly. These names cannot then be assigned values by subsequent

assignment statements.
−x Mark names for export to subsequent commands via the environment.
−i The variable is treated as an integer; arithmetic evaluation (see ARITHMETIC EVALUA-

TION) is performed when the variable is assigned a value.

Using ‘+’ instead of ‘−’ turns off the attribute instead. When used in a function, makes names
local, as with the local command. The return value is 0 unless an illegal option is encountered, an
attempt is made to define a function using "-f foo=bar", one of the names is not a legal shell vari-
able name, an attempt is made to turn off readonly status for a readonly variable, or an attempt is
made to display a non-existant function with -f.

dirs [-l] [+/−n]
Display the list of currently remembered directories. Directories are added to the list with the
pushd command; the popd command moves back up through the list.
+n displays the nth entry counting from the left of the list shown by dirs when invoked with-

out options, starting with zero.
−n displays the nth entry counting from the right of the list shown by dirs when invoked

without options, starting with zero.
−l produces a longer listing; the default listing format uses a tilde to denote the home direc-

tory.

The return value is 0 unless an illegal option is supplied or n indexes beyond the end of the direc-
tory stack.

echo [−neE] [arg ...]
Output the args, separated by spaces. The return status is always 0. If −n is specified, the trailing
newline is suppressed. If the −e option is given, interpretation of the following backslash-escaped
characters is enabled. The −E option disables the interpretation of these escape characters, even
on systems where they are interpreted by default.
\a alert (bell)
\b backspace
\c suppress trailing newline
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\nnn the character whose ASCII code is nnn (octal)

enable [−n] [−all] [name ...]
Enable and disable builtin shell commands. This allows the execution of a disk command which
has the same name as a shell builtin without specifying a full pathname. If −n is used, each name

is disabled; otherwise, names are enabled. For example, to use the test binary found via the PATH

GNU 1994 July 26 27

BASH(1) BASH(1)

instead of the shell builtin version, type ‘‘enable -n test’’. If no arguments are given, a list of all
enabled shell builtins is printed. If only −n is supplied, a list of all disabled builtins is printed. If
only −all is supplied, the list printed includes all builtins, with an indication of whether or not each
is enabled. enable accepts −a as a synonym for −all. The return value is 0 unless a name is not a
shell builtin.

ev al [arg ...]
The args are read and concatenated together into a single command. This command is then read
and executed by the shell, and its exit status is returned as the value of the ev al command. If there
are no args, or only null arguments, ev al returns true.

exec [[−] command [arguments]]
If command is specified, it replaces the shell. No new process is created. The arguments become
the arguments to command. If the first argument is −, the shell places a dash in the zeroth arg
passed to command . This is what login does. If the file cannot be executed for some reason, a
non-interactive shell exits, unless the shell variable no_exit_on_failed_exec exists, in which case
it returns failure. An interactive shell returns failure if the file cannot be executed. If command is
not specified, any redirections take effect in the current shell, and the return status is 0.

exit [n] Cause the shell to exit with a status of n. If n is omitted, the exit status is that of the last command
executed. A trap on EXIT is executed before the shell terminates.

export [−nf] [name[=word]] ...
export −p

The supplied names are marked for automatic export to the environment of subsequently executed
commands. If the −f option is given, the names refer to functions. If no names are given, or if the
−p option is supplied, a list of all names that are exported in this shell is printed. The −n option
causes the export property to be removed from the named variables. An argument of −− disables
option checking for the rest of the arguments. export returns an exit status of 0 unless an illegal
option is encountered, one of the names is not a legal shell variable name, or −f is supplied with a
name that is not a function.

fc [−e ename] [−nlr] [first] [last]
fc −s [pat=rep] [cmd]

Fix Command. In the first form, a range of commands from first to last is selected from the his-
tory list. First and last may be specified as a string (to locate the last command beginning with
that string) or as a number (an index into the history list, where a negative number is used as an
offset from the current command number). If last is not specified it is set to the current command
for listing (so that fc −l −10 prints the last 10 commands) and to first otherwise. If first is not spec-
ified it is set to the previous command for editing and −16 for listing.

The −n flag suppresses the command numbers when listing. The −r flag reverses the order of the
commands. If the −l flag is given, the commands are listed on standard output. Otherwise, the
editor given by ename is invoked on a file containing those commands. If ename is not given, the
value of the FCEDIT variable is used, and the value of EDITOR if FCEDIT is not set. If neither
variable is set, vi is used. When editing is complete, the edited commands are echoed and
executed.

In the second form, command is re-executed after each instance of pat is replaced by rep. A useful
alias to use with this is ‘‘r=fc −s’’, so that typing ‘‘r cc’’ runs the last command beginning with
‘‘cc’’ and typing ‘‘r’’ re-executes the last command.

If the first form is used, the return value is 0 unless an illegal option is encountered or first or last

specify history lines out of range. If the −e option is supplied, the return value is the value of the
last command executed or failure if an error occurs with the temporary file of commands. If the
second form is used, the return status is that of the command re-executed, unless cmd does not
specify a valid history line, in which case fc returns failure.

GNU 1994 July 26 28

BASH(1) BASH(1)

fg [jobspec]
Place jobspec in the foreground, and make it the current job. If jobspec is not present, the shell’s
notion of the current job is used. The return value is that of the command placed into the fore-
ground, or failure if run when job control is disabled or, when run with job control enabled, if job-

spec does not specify a valid job or jobspec specifies a job that was started without job control.

getopts optstring name [args]
getopts is used by shell procedures to parse positional parameters. optstring contains the option
letters to be recognized; if a letter is followed by a colon, the option is expected to have an argu-
ment, which should be separated from it by white space. Each time it is invoked, getopts places
the next option in the shell variable name, initializing name if it does not exist, and the index of the
next argument to be processed into the variable OPTIND. OPTIND is initialized to 1 each time the
shell or a shell script is invoked. When an option requires an argument, getopts places that argu-
ment into the variable OPTARG. The shell does not reset OPTIND automatically; it must be manu-
ally reset between multiple calls to getopts within the same shell invocation if a new set of param-
eters is to be used.

getopts can report errors in two ways. If the first character of optstring is a colon, silent error
reporting is used. In normal operation diagnostic messages are printed when illegal options or
missing option arguments are encountered. If the variable OPTERR is set to 0, no error message
will be displayed, even if the first character of optstring is not a colon.

If an illegal option is seen, getopts places ? into name and, if not silent, prints an error message
and unsets OPTARG. If getopts is silent, the option character found is placed in OPTARG and no
diagnostic message is printed.

If a required argument is not found, and getopts is not silent, a question mark (?) is placed in
name, OPTARG is unset, and a diagnostic message is printed. If getopts is silent, then a colon
(:) is placed in name and OPTARG is set to the option character found.

getopts normally parses the positional parameters, but if more arguments are given in args,
getopts parses those instead. getopts returns true if an option, specified or unspecified, is found.
It returns false if the end of options is encountered or an error occurs.

hash [−r] [name]
For each name, the full pathname of the command is determined and remembered. The −r option
causes the shell to forget all remembered locations. If no arguments are given, information about
remembered commands is printed. An argument of −− disables option checking for the rest of the
arguments. The return status is true unless a name is not found or an illegal option is supplied.

help [pattern]
Display helpful information about builtin commands. If pattern is specified, help gives detailed
help on all commands matching pattern; otherwise a list of the builtins is printed. The return sta-
tus is 0 unless no command matches pattern.

history [n]
history −rwan [filename]

With no options, display the command history list with line numbers. Lines listed with a * have
been modified. An argument of n lists only the last n lines. If a non-option argument is supplied,
it is used as the name of the history file; if not, the value of HISTFILE is used. Options, if sup-
plied, have the following meanings:
−a Append the ‘‘new’’ history lines (history lines entered since the beginning of the current

bash session) to the history file
−n Read the history lines not already read from the history file into the current history list.

These are lines appended to the history file since the beginning of the current bash ses-
sion.

GNU 1994 July 26 29

BASH(1) BASH(1)

−r Read the contents of the history file and use them as the current history
−w Write the current history to the history file, overwriting the history file’s contents.

The return value is 0 unless an illegal option is encountered or an error occurs while reading or
writing the history file.

jobs [−lnp] [jobspec ...]
jobs −x command [args ...]

The first form lists the active jobs. The −l option lists process IDs in addition to the normal infor-
mation; the −p option lists only the process ID of the job’s process group leader. The −n option
displays only jobs that have changed status since last notified. If jobspec is given, output is
restricted to information about that job. The return status is 0 unless an illegal option is encoun-
tered or an illegal jobspec is supplied.

If the −x option is supplied, jobs replaces any jobspec found in command or args with the corre-
sponding process group ID, and executes command passing it args, returning its exit status.

kill [-s sigspec | −sigspec] [pid | jobspec] ...
kill −l [signum]

Send the signal named by sigspec to the processes named by pid or jobspec. sigspec is either a
signal name such as SIGKILL or a signal number. If sigspec is a signal name, the name is case
insensitive and may be given with or without the SIG prefix. If sigspec is not present, then
SIGTERM is assumed. An argument of −l lists the signal names. If any arguments are supplied
when −l is given, the names of the specified signals are listed, and the return status is 0. An argu-
ment of −− disables option checking for the rest of the arguments. kill returns true if at least one
signal was successfully sent, or false if an error occurs or an illegal option is encountered.

let arg [arg ...]
Each arg is an arithmetic expression to be evaluated (see ARITHMETIC EVALUATION). If the
last arg evaluates to 0, let returns 1; 0 is returned otherwise.

local [name[=value] ...]
For each argument, create a local variable named name, and assign it value. When local is used
within a function, it causes the variable name to have a visible scope restricted to that function and
its children. With no operands, local writes a list of local variables to the standard output. It is an
error to use local when not within a function. The return status is 0 unless local is used outside a
function, or an illegal name is supplied.

logout Exit a login shell.

popd [+/−n]
Removes entries from the directory stack. With no arguments, removes the top directory from the
stack, and performs a cd to the new top directory.
+n removes the nth entry counting from the left of the list shown by dirs, starting with zero.

For example: ‘‘popd +0’’ removes the first directory, ‘‘popd +1’’ the second.
−n removes the nth entry counting from the right of the list shown by dirs, starting with zero.

For example: ‘‘popd -0’’ removes the last directory, ‘‘popd -1’’ the next to last.

If the popd command is successful, a dirs is performed as well, and the return status is 0. popd
returns false if an illegal option is encountered, the directory stack is empty, a non-existent direc-
tory stack entry is specified, or the directory change fails.

pushd [dir]
pushd +/−n

Adds a directory to the top of the directory stack, or rotates the stack, making the new top of the
stack the current working directory. With no arguments, exchanges the top two directories and
returns 0, unless the directory stack is empty.
+n Rotates the stack so that the nth directory (counting from the left of the list shown by

dirs) is at the top.

GNU 1994 July 26 30

BASH(1) BASH(1)

−n Rotates the stack so that the nth directory (counting from the right) is at the top.
dir adds dir to the directory stack at the top, making it the new current working directory.

If the pushd command is successful, a dirs is performed as well. If the first form is used, pushd
returns 0 unless the cd to dir fails. With the second form, pushd returns 0 unless the directory
stack is empty, a non-existant directory stack element is specified, or the directory change to the
specified new current directory fails.

pwd Print the absolute pathname of the current working directory. The path printed contains no sym-
bolic links if the −P option to the set builtin command is set. See also the description of nolinks
under Shell Variables above). The return status is 0 unless an error occurs while reading the path-
name of the current directory.

read [−r] [name ...]
One line is read from the standard input, and the first word is assigned to the first name, the second
word to the second name, and so on, with leftover words assigned to the last name. Only the char-
acters in IFS are recognized as word delimiters. If no names are supplied, the line read is assigned
to the variable REPLY. The return code is zero, unless end-of-file is encountered. If the −r option
is given, a backslash-newline pair is not ignored, and the backslash is considered to be part of the
line.

readonly [−f] [name ...]
readonly -p

The given names are marked readonly and the values of these names may not be changed by sub-
sequent assignment. If the −f option is supplied, the functions corresponding to the names are so
marked. If no arguments are given, or if the −p option is supplied, a list of all readonly names is
printed. An argument of −− disables option checking for the rest of the arguments. The return sta-
tus is 0 unless an illegal option is encountered, one of the names is not a legal shell variable name,
or −f is supplied with a name that is not a function.

return [n]
Causes a function to exit with the return value specified by n. If n is omitted, the return status is
that of the last command executed in the function body. If used outside a function, but during
execution of a script by the . (source) command, it causes the shell to stop executing that script
and return either n or the exit status of the last command executed within the script as the exit sta-
tus of the script. If used outside a function and not during execution of a script by . , the return sta-
tus is false.

set [−−abefhkmnptuvxldCHP] [-o option] [arg ...]
−a Automatically mark variables which are modified or created for export to the environ-

ment of subsequent commands.
−b Cause the status of terminated background jobs to be reported immediately, rather than

before the next primary prompt. (Also see notify under Shell Variables above).
−e Exit immediately if a simple-command (see SHELL GRAMMAR above) exits with a

non−zero status. The shell does not exit if the command that fails is part of an until or
while loop, part of an if statement, part of a && or   list, or if the command’s return
value is being inverted via !.

−f Disable pathname expansion.
−h Locate and remember function commands as functions are defined. Function commands

are normally looked up when the function is executed.
−k All keyword arguments are placed in the environment for a command, not just those that

precede the command name.
−m Monitor mode. Job control is enabled. This flag is on by default for interactive shells on

systems that support it (see JOB CONTROL above). Background processes run in a sep-
arate process group and a line containing their exit status is printed upon their comple-
tion.

−n Read commands but do not execute them. This may be used to check a shell script for
syntax errors. This is ignored for interactive shells.

GNU 1994 July 26 31

BASH(1) BASH(1)

−o option-name

The option-name can be one of the following:
allexport

Same as −a.
braceexpand

The shell performs brace expansion (see Brace Expansion above). This is on
by default.

emacs Use an emacs-style command line editing interface. This is enabled by default
when the shell is interactive, unless the shell is started with the −nolineediting
option.

errexit Same as −e.
histexpand

Same as −H.
ignoreeof

The effect is as if the shell command ‘IGNOREEOF=10’ had been executed
(see Shell Variables above).

interactive−comments
Allow a word beginning with # to cause that word and all remaining characters
on that line to be ignored in an interactive shell (see COMMENTS above).

monitor Same as −m.
noclobber

Same as −C.
noexec Same as −n.
noglob Same as −f.
nohash Same as −d.
notify Same as −b.
nounset Same as −u.
physical Same as −P.
posix Change the behavior of bash where the default operation differs from the

Posix 1003.2 standard to match the standard.
privileged

Same as −p.
verbose Same as −v.
vi Use a vi-style command line editing interface.
xtrace Same as −x.
If no option-name is supplied, the values of the current options are printed.

−p Turn on privileged mode. In this mode, the $ENV file is not processed, and shell func-
tions are not inherited from the environment. This is enabled automatically on startup if
the effective user (group) id is not equal to the real user (group) id. Turning this option
off causes the effective user and group ids to be set to the real user and group ids.

−t Exit after reading and executing one command.
−u Treat unset variables as an error when performing parameter expansion. If expansion is

attempted on an unset variable, the shell prints an error message, and, if not interactive,
exits with a non−zero status.

−v Print shell input lines as they are read.
−x After expanding each simple-command , bash displays the expanded value of PS4, fol-

lowed by the command and its expanded arguments.
−l Save and restore the binding of name in a for name [in word] command (see SHELL

GRAMMAR above).
−d Disable the hashing of commands that are looked up for execution. Normally, com-

mands are remembered in a hash table, and once found, do not have to be looked up
again.

−C The effect is as if the shell command ‘noclobber=’ had been executed (see Shell Vari-
ables above).

GNU 1994 July 26 32

BASH(1) BASH(1)

−H Enable ! style history substitution. This flag is on by default when the shell is interac-
tive.

−P If set, do not follow symbolic links when performing commands such as cd which
change the current directory. The physical directory is used instead.

−− If no arguments follow this flag, then the positional parameters are unset. Otherwise, the
positional parameters are set to the args, even if some of them begin with a −.

− Signal the end of options, cause all remaining args to be assigned to the positional
parameters. The −x and −v options are turned off. If there are no args, the positional
parameters remain unchanged.

The flags are off by default unless otherwise noted. Using + rather than − causes these flags to be
turned off. The flags can also be specified as options to an invocation of the shell. The current set
of flags may be found in $−. After the option arguments are processed, the remaining n args are
treated as values for the positional parameters and are assigned, in order, to $1, $2, ... $n. If no
options or args are supplied, all shell variables are printed. The return status is always true unless
an illegal option is encountered.

shift [n]
The positional parameters from n+1 ... are renamed to $1 If n is not given, it is assumed to be
1. The exit status is 1 if n is greater than $#; otherwise 0.

suspend [−f]
Suspend the execution of this shell until it receives a SIGCONT signal. The −f option says not to
complain if this is a login shell; just suspend anyway. The return status is 0 unless the shell is a
login shell and −f is not supplied, or if job control is not enabled.

test expr

[expr] Return a status of 0 (true) or 1 (false) depending on the evaluation of the conditional expression
expr. Expressions may be unary or binary. Unary expressions are often used to examine the status
of a file. There are string operators and numeric comparison operators as well. Each operator and
operand must be a separate argument. If file is of the form /dev/fd/n, then file descriptor n is
checked.
−b file True if file exists and is block special.
−c file True if file exists and is character special.
−d file True if file exists and is a directory.
−e file True if file exists.
−f file True if file exists and is a regular file.
−g file True if file exists and is set-group-id.
−k file True if file has its ‘‘sticky’’ bit set.
−L file True if file exists and is a symbolic link.
−p file True if file exists and is a named pipe.
−r file True if file exists and is readable.
−s file True if file exists and has a size greater than zero.
−S file True if file exists and is a socket.
−t fd True if fd is opened on a terminal.
−u file True if file exists and its set-user-id bit is set.
−w file True if file exists and is writable.
−x file True if file exists and is executable.
−O file True if file exists and is owned by the effective user id.
−G file True if file exists and is owned by the effective group id.
file1 −nt file2

True if file1 is newer (according to modification date) than file2.
file1 −ot file2

True if file1 is older than file2.
file1 −ef file

True if file1 and file2 have the same device and inode numbers.

GNU 1994 July 26 33

BASH(1) BASH(1)

−z string

True if the length of string is zero.
−n string

string True if the length of string is non−zero.
string1 = string2

True if the strings are equal.
string1 != string2

True if the strings are not equal.
! expr True if expr is false.
expr1 −a expr2

True if both expr1 AND expr2 are true.
expr1 −o expr2

True if either expr1 OR expr2 is true.
arg1 OP arg2

OP is one of −eq, −ne, −lt, −le, −gt, or −ge. These arithmetic binary operators return true
if arg1 is equal, not-equal, less-than, less-than-or-equal, greater-than, or greater-than-or-
equal than arg2, respectively. Arg1 and arg2 may be positive integers, negative integers,
or the special expression −l string, which evaluates to the length of string.

times Print the accumulated user and system times for the shell and for processes run from the shell.
The return status is 0.

trap [−l] [arg] [sigspec]
The command arg is to be read and executed when the shell receives signal(s) sigspec. If arg is
absent or −, all specified signals are reset to their original values (the values they had upon
entrance to the shell). If arg is the null string this signal is ignored by the shell and by the com-
mands it invokes. sigspec is either a signal name defined in <signal.h>, or a signal number. If
sigspec is EXIT (0) the command arg is executed on exit from the shell. With no arguments, trap
prints the list of commands associated with each signal number. The −l option causes the shell to
print a list of signal names and their corresponding numbers. An argument of −− disables option
checking for the rest of the arguments. Signals ignored upon entry to the shell cannot be trapped
or reset. Trapped signals are reset to their original values in a child process when it is created.
The return status is false if either the trap name or number is invalid; otherwise trap returns true.

type [−all] [−type | −path] name [name ...]
With no options, indicate how each name would be interpreted if used as a command name. If the
−type flag is used, type prints a phrase which is one of alias, keyword , function, builtin, or file if
name is an alias, shell reserved word, function, builtin, or disk file, respectively. If the name is not
found, then nothing is printed, and an exit status of false is returned. If the −path flag is used,
type either returns the name of the disk file that would be executed if name were specified as a
command name, or nothing if −type would not return file. If a command is hashed, −path prints
the hashed value, not necessarily the file that appears first in PATH. If the −all flag is used, type
prints all of the places that contain an executable named name. This includes aliases and func-
tions, if and only if the −path flag is not also used. The table of hashed commands is not con-
sulted when using −all. type accepts −a, −t, and −p in place of −all, −type, and −path, respec-
tively. An argument of −− disables option checking for the rest of the arguments. type returns
true if any of the arguments are found, false if none are found.

ulimit [−SHacdfmstpnuv [limit]]
Ulimit provides control over the resources available to the shell and to processes started by it, on
systems that allow such control. The value of limit can be a number in the unit specified for the
resource, or the value unlimited. The H and S options specify that the hard or soft limit is set for
the given resource. A hard limit cannot be increased once it is set; a soft limit may be increased up
to the value of the hard limit. If neither H nor S is specified, the command applies to the soft limit.
If limit is omitted, the current value of the soft limit of the resource is printed, unless the H option
is given. When more than one resource is specified, the limit name and unit is printed before the
value. Other options are interpreted as follows:

GNU 1994 July 26 34

BASH(1) BASH(1)

−a all current limits are reported
−c the maximum size of core files created
−d the maximum size of a process’s data segment
−f the maximum size of files created by the shell
−m the maximum resident set size
−s the maximum stack size
−t the maximum amount of cpu time in seconds
−p the pipe size in 512-byte blocks (this may not be set)
−n the maximum number of open file descriptors (most systems do not allow this value to be

set, only displayed)
−u the maximum number of processes available to a single user
−v The maximum amount of virtual memory available to the shell

An argument of −− disables option checking for the rest of the arguments. If limit is given, it is
the new value of the specified resource (the −a option is display only). If no option is given, then
−f is assumed. Values are in 1024-byte increments, except for −t, which is in seconds, −p, which
is in units of 512-byte blocks, and −n and −u, which are unscaled values. The return status is 0
unless an illegal option is encountered, a non-numeric argument other than unlimited is supplied
as limit, or an error occurs while setting a new limit.

umask [−S] [mode]
The user file-creation mask is set to mode. If mode begins with a digit, it is interpreted as an octal
number; otherwise it is interpreted as a symbolic mode mask similar to that accepted by chmod(1).
If mode is omitted, or if the −S option is supplied, the current value of the mask is printed. The −S
option causes the mask to be printed in symbolic form; the default output is an octal number. An
argument of −− disables option checking for the rest of the arguments. The return status is 0 if the
mode was successfully changed or if no mode argument was supplied, and false otherwise.

unalias [−a] [name ...]
Remove names from the list of defined aliases. If −a is supplied, all alias definitions are removed.
The return value is true unless a supplied name is not a defined alias.

unset [−fv] [name ...]
For each name, remove the corresponding variable or, giv en the −f option, function. An argument
of −− disables option checking for the rest of the arguments. Note that PATH, IFS, PPID, PS1, PS2,

UID, and EUID cannot be unset. If any of RANDOM, SECONDS, LINENO, or HISTCMD are
unset, they lose their special properties, even if they are subsequently reset. The exit status is true
unless a name does not exist or is non-unsettable.

wait [n]
Wait for the specified process and return its termination status. n may be a process ID or a job
specification; if a job spec is given, all processes in that job’s pipeline are waited for. If n is not
given, all currently active child processes are waited for, and the return status is zero. If n specifies
a non-existant process or job, the return status is 127. Otherwise, the return status is the exit status
of the last process or job waited for.

INVOCATION

A login shell is one whose first character of argument zero is a −, or one started with the −login flag.

An interactive shell is one whose standard input and output are both connected to terminals (as determined
by isatty(3)), or one started with the −i option. PS1 is set and $− includes i if bash is interactive, allowing a
shell script or a startup file to test this state.

Login shells:
On login (subject to the −noprofile option):

if /etc/profile exists, source it.

if ˜/.bash_profile exists, source it,
else if ˜/.bash_login exists, source it,

GNU 1994 July 26 35

BASH(1) BASH(1)

else if ˜/.profile exists, source it.

On exit:
if ˜/.bash_logout exists, source it.

Non-login interactive shells:
On startup (subject to the −norc and −rcfile options):

if ˜/.bashrc exists, source it.

Non-interactive shells:
On startup:

if the environment variable ENV is non-null, expand
it and source the file it names, as if the command

if ["$ENV"]; then . $ENV; fi
had been executed, but do not use PATH to search
for the pathname. When not started in Posix mode, bash
looks for BASH_ENV before ENV.

If Bash is invoked as sh, it tries to mimic the behavior of sh as closely as possible. For a login shell, it
attempts to source only /etc/profile and ˜/.profile, in that order. The −noprofile option may still be used to
disable this behavior. A shell invoked as sh does not attempt to source any other startup files.

When bash is started in posix mode, as with the −posix command line option, it follows the Posix standard
for startup files. In this mode, the ENV variable is expanded and that file sourced; no other startup files are
read.

SEE ALSO

Bash Features, Brian Fox and Chet Ramey
The Gnu Readline Library, Brian Fox and Chet Ramey
The Gnu History Library, Brian Fox and Chet Ramey
A System V Compatible Implementation of 4.2BSD Job Control, David Lennert
Portable Operating System Interface (POSIX) Part 2: Shell and Utilities, IEEE
sh(1), ksh(1), csh(1)
emacs(1), vi(1)
readline(3)

FILES

/bin/bash

The bash executable
/etc/profile

The systemwide initialization file, executed for login shells
˜/.bash_profile

The personal initialization file, executed for login shells
˜/.bashrc

The individual per-interactive-shell startup file
˜/.inputrc

Individual readline initialization file

AUTHORS

Brian Fox, Free Software Foundation (primary author)
bfox@ai.MIT.Edu

Chet Ramey, Case Western Reserve University
chet@ins.CWRU.Edu

BUG REPORTS

If you find a bug in bash, you should report it. But first, you should make sure that it really is a bug, and
that it appears in the latest version of bash that you have.

GNU 1994 July 26 36

BASH(1) BASH(1)

Once you have determined that a bug actually exists, mail a bug report to
bash−maintainers@prep.ai.MIT.Edu. If you have a fix, you are welcome to mail that as well! Suggestions
and ‘philosophical’ bug reports may be mailed to bug-bash@prep.ai.MIT.Edu or posted to the Usenet
newsgroup gnu.bash.bug.

ALL bug reports should include:

The version number of bash
The hardware and operating system
The compiler used to compile
A description of the bug behaviour
A short script or ‘recipe’ which exercises the bug

Comments and bug reports concerning this manual page should be directed to chet@ins.CWRU.Edu.

BUGS

It’s too big and too slow.

There are some subtle differences between bash and traditional versions of sh, mostly because of the
POSIX specification.

Aliases are confusing in some uses.

GNU 1994 July 26 37

